Micro-scale H2–CO2 Dynamics in a Hydrogenotrophic Methanogenic Membrane Reactor
نویسندگان
چکیده
Biogas production is a key factor in a sustainable energy supply. It is possible to get biogas with very high methane content if the biogas reactors are supplied with exogenous hydrogen, and one of the technologies for supplying hydrogen is through gas permeable membranes. In this study the activity and stratification of hydrogen consumption above such a membrane was investigated by use of microsensors for hydrogen and pH. A hydrogenotrophic methanogenic community that was able to consume the hydrogen flux within 0.5 mm of the membrane with specific rates of up to 30 m(3) H2 m(-3) day(-1) developed within 3 days in fresh manure and was already established at time zero when analyzing slurry from a biogas plant. The hydrogen consumption was dependent on a simultaneous carbon dioxide supply and was inhibited when carbon dioxide depletion elevated the pH to 9.2. The activity was only partially restored when the carbon dioxide supply was resumed. Bioreactors supplied with hydrogen gas should thus be carefully monitored and either have the hydrogen supply disrupted or be supplemented with carbon dioxide when the pH rises to values about 9.
منابع مشابه
Analysis of the Microbial Community in an Acidic Hollow-Fiber Membrane Biofilm Reactor (Hf-MBfR) Used for the Biological Conversion of Carbon Dioxide to Methane
Hydrogenotrophic methanogens can use gaseous substrates, such as H2 and CO2, in CH4 production. H2 gas is used to reduce CO2. We have successfully operated a hollow-fiber membrane biofilm reactor (Hf-MBfR) for stable and continuous CH4 production from CO2 and H2. CO2 and H2 were diffused into the culture medium through the membrane without bubble formation in the Hf-MBfR, which was operated at ...
متن کاملProteomic Analysis of the Hydrogen and Carbon Monoxide Metabolism of Methanothermobacter marburgensis
Hydrogenotrophic methanogenic archaea are efficient H2 utilizers, but only a few are known to be able to utilize CO. Methanothermobacter thermoautotrophicus is one of the hydrogenotrophic methanogens able to grow on CO, albeit about 100 times slower than on H2 + CO2. In this study, we show that the hydrogenotrophic methanogen Methanothermobacter marburgensis, is able to perform methanogenic gro...
متن کاملMethanogenic population dynamics and performance of an anaerobic membrane bioreactor (AnMBR) treating swine manure under high shear conditions.
A 6-L, completely mixed anaerobic bioreactor with an external ultrafiltration membrane module was operated for 300 days to evaluate the startup and performance of an anaerobic membrane bioreactor (AnMBR) treating swine manure. The reactor had a successful startup at the initial loading rate of 1g volatile solids (VS)/L/day. After a two-fold increase in loading rate followed by a sudden, two-fol...
متن کاملComplete Genome Sequence of Methanoregula formicica SMSPT, a Mesophilic Hydrogenotrophic Methanogen Isolated from a Methanogenic Upflow Anaerobic Sludge Blanket Reactor
Methanoregula formicica SMSP(T) is a mesophilic H2/formate-utilizing methanogenic archaeon and a representative of the family Methanoregulaceae, a recently proposed novel family within the order Methanomicrobiales. Here, we report a 2.8-Mb complete genome sequence of this methanogenic archaeon.
متن کاملConversion of H2 and CO2 to CH4 and acetate in fed-batch biogas reactors by mixed biogas community: a novel route for the power-to-gas concept
BACKGROUND Applications of the power-to-gas principle for the handling of surplus renewable electricity have been proposed. The feasibility of using hydrogenotrophic methanogens as CH4 generating catalysts has been demonstrated. Laboratory and scale-up experiments have corroborated the benefits of the CO2 mitigation via biotechnological conversion of H2 and CO2 to CH4. A major bottleneck in the...
متن کامل